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We present three different methods for the modeling of disorder effects in three-dimensional photonic
crystals. In order to reproduce experimental results, we apply a method based on a statistical distribution of
sphere sizes and vacancy density in a colloidal crystal slab. The other two methods consist of adding extinction
to the theoretical model so energy losses account for the diffuse light scattering produced by imperfections in
the crystalline structure, which removes energy from coherently scattered waves. Although we exemplify the
case of synthetic opals, our analysis also applies to other kinds of photonic crystals.
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I. INTRODUCTION

Three-dimensional �3D� photonic crystals �PCs� have at-
tracted much attention during the last decades mainly due to
the possibility of an intelligent control of light and the po-
tential applications in optoelectronics and microwave
devices.1,2 Spatial periodicity of the dielectric function along
three independent directions is essential in order to obtain a
complete band gap where the propagation of light along any
direction is forbidden for photon energies within the gap.3,4

The need for simple and fast methods of fabricating 3D PCs
with band gaps in the near-infrared and visible spectra has
lead to the use of colloidal particles in the micrometer scale.
Hence, fabrication methods that take advantage of the self-
assembling properties of dielectric spheres are now available
and their permanent improvement has produced colloidal
PCs with a low degree of defects.5–9 In this paper we are
interested in unintentional disruptions that arise in the spatial
periodicity during the fabrication process.10–16 These intrin-
sic defects or imperfections are different from local defects,
which are introduced by adding or removing materials in a
controlled manner in order to achieve localized modes within
the band gaps17,18 in analogy with the doping of
semiconductors.19 In the low-energy range, where the lattice
constant is less than the wavelength of light, the size of im-
perfections in the crystalline structure is small compared to
the wavelength. Thus, in this range, the optical response of
the real PC, although slightly modified, is basically that of a
perfectly ordered one.20 However, in the high-energy range21

where the lattice constant is greater than the wavelength, the
size of defects becomes important and the optical spectra of
a real PC are very different from those of a perfect
one.20,22–24 Therefore, the reproduction of experimental re-
flectance and transmittance spectra via any theoretical ap-
proach requires the modeling of disorder in some way.

Deviations from perfect periodicity cause scattering and
hence exponential attenuation of the coherent radiation
propagating through a PC. In the low-energy range the de-
gree of disorder has been evaluated using the concept of
extinction length13 or assigning an imaginary part to an ef-
fective refractive index.14 A rather different approach has
been recently used to reproduce optical features observed for
colloidal crystals in the high-energy region.20,22–24 In this ap-

proach, disorder effects observed in spherical colloidal crys-
tals made of lossless materials have been satisfactorily mod-
eled by keeping the hypothesis that the spheres are arranged
in a perfectly periodic lattice while introducing some loss via
the imaginary part of the dielectric constant of the latex
spheres. Excellent agreement with different experimental re-
sults has been obtained although latex absorption is known to
be negligible in the considered spectral range. In particular,
the approach has been used to explain why a very fine-
featured theoretically expected reflection spectrum25—due to
the complicated band structure of the high-energy region—
has not been experimentally observed yet.20 Moreover, the
imaginary dielectric constant introduced into the model has
been shown to be a function of the crystal size, which indi-
cates that this single parameter can be used as a measure of
the degree of disorder in a real PC slab.22 The approach has
also been used to explain the physical origin of reflectance
and transmittance features observed in the high-energy
range23 and to reproduce the spectra of nonspecular spots
diffracted from colloidal crystals.24

The results obtained with the extinction method indicate
that the introduction of losses to model PCs with lossless
building blocks can be regarded as a convenient theoretical
tool to account for diffusely scattered light produced by dis-
order and imperfections, a mechanism which removes energy
from the specularly reflected and forward transmitted beams.
However, this approximation, although useful to fit experi-
mental results, does not seem to be completely satisfactory
from a physical point of view. Many quantitative and quali-
tative questions remain to be answered, such as whether the
effect of imperfections can be distinguished from actual ab-
sorption within a PC building block, how different types of
imperfections contribute to the imaginary part of the dielec-
tric constant, or whether there is a unique way to represent a
variety of imperfections by a single extinction parameter.

The purpose of this paper is to address some of these
questions using the electromagnetic counterpart of one of the
simplest approximations used in the electron-scattering
problem:26,27 the average T-matrix approximation �ATA�. In
the ATA method—generally valid when the disorder is
weak—the scattering matrix �T-matrix� of a single scatterer
is averaged over particle states obtaining a sort of average
scatterer, and the actual disordered structure is replaced by a
perfectly periodic lattice of this average scatterer. In the PC
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version, particle states refer to distributions of size, shape,
position, orientation, refractive index, etc., of the scatterers,
so we will employ statistical methods in order to calculate
the ATA matrix.28 Electromagnetic interactions between the
scatterers arranged in a periodic lattice will be calculated by
means of the layer-multiple-scattering method for spherical
scatterers,29–32 usually known as the vector version of the
Korringa-Kohn-Rostoker �KKR� method.33 For the sake of
simplicity, we assume that the scatterers are homogeneous
spheres, although KKR methods can be, in principle, ex-
tended to other systems of spherical and nonspherical par-
ticles, because the scattering properties of the individual
scatterers enter only through the corresponding T matrix.34,35

Some previous uses of the ATA for the evaluation of dis-
order effects in PCs include systems of metallic spheres30,36

and studies on negative refraction in random photonic alloys
of polaritonic and plasmonic microspheres.37 ATA results
have also been used as a reasonable initial input for iterative
schemes obtained in the frame of improved treatments of
disorder based on the so-called coherent-potential
approximation.38 Here we use the ATA method to evaluate
disorder effects in 3D PCs constructed from intrinsically
transparent building blocks. We exemplify the case of syn-
thetic opals, but our analysis also applies to other kinds of
PCs. Among all the sources of unavoidable imperfections,
we focus on those originating from a statistical distribution
of sphere sizes and vacancy density. Our results show that a
fairly good fitting of experimental curves can be obtained
when these two kinds of defects are taken into account.

This paper is organized as follows. In Sec. II the use of
the ATA method within the framework of the KKR multiple-
scattering approach for spherical particles is reviewed. The
focus of the formulation is placed on disorder effects related
with polydispersity39 or variations in the size of particles as
well as sphere vacancies. In Sec. III we present numerical
results obtained with the ATA method and compare our simu-
lations with the experimental spectra reported by two inde-
pendent research groups.9,21 A very good agreement, previ-
ously obtained only with the extinction approach, is observed
between theory and experiment. Some ideas of the ATA
method are used in Sec. IV to obtain more flexible versions
of the simple extinction approach in which the effect of im-
perfections is managed through the use of two, instead of
one, parameters. Finally, in Sec. V, the more outstanding
results are summarized and discussed.

II. ATA-KKR METHOD FOR MODELING DEFECTS

We begin with a brief description of the scattering by a
single sphere and the calculations involved in the vector
KKR method.29–32 An incident electromagnetic wave on a
sphere centered at the origin of coordinates �r�=0� has an
electric field with a spherical wave expansion given by40

E� �r�� = �
l=1

�

�
m=−l

l � i

k
alm

0E�� � jl�kr�X� lm��,��

+ alm
0Hjl�kr�X� lm��,��� , �1�

where �r ,� ,�� are the usual spherical coordinates of an

evaluation point r�, � and � are the dielectric permittivity and
magnetic permeability, respectively, of the homogeneous me-
dium outside the sphere, � is the angular frequency, c is the
velocity of light in vacuum, k=���� /c, jl�kr� are the spheri-

cal Bessel functions of the first kind, and X� lm�� ,�� are the
vector spherical harmonics. The magnetic field can be ob-
tained from Maxwell’s equations and has a similar series
expansion. In this multipole expansion, the integers �l ,m�,
where l	1 and −l
m
 l, represent a spherical partial wave
of order �l ,m�, which can be either electric �with complex
amplitude alm

0E� or magnetic �with complex amplitude alm
0H�.

Dipole fields correspond to l=1, quadrupole fields corre-
spond to l=2, and so on. By applying the orthogonality prop-
erty of the vector spherical harmonics, it is straightforward to
prove that electric multipoles radiate transverse magnetic
�TM� fields, while magnetic multipoles radiate transverse
electric �TE� fields. Thus, the multipole expansion in Eq. �1�
can also be viewed as a linear combination of TM and TE
spherical waves. In a numerical calculation, a cut-off LMAX
in the multipole expansion must be chosen, retaining the first
2 LMAX �LMAX+2� terms. The electromagnetic field scat-
tered by the sphere at the origin is given by replacing jl�kr�
with the spherical Hankel function of the first kind hl

+�kr�,
which corresponds to outgoing spherical waves. Also, the
coefficients alm

0P must be replaced with the new coefficients
alm

+P of the scattered wave, where P=E ,H. The T-matrix T
relating the incident and scattered wave coefficients, alm

0P and
alm

+P, can be found by enforcing the boundary conditions on
the surface of the sphere. It can be proved32 that this matrix
is diagonal, T=Tl

P�PP��ll��mm�, and that its elements are
given by

Tl
E = � jl�ksr�

�

�r
�rjl�kr�	�s − jl�kr�

�

�r
�rjl�ksr�	�

hl
+�kr�

�

�r
�rjl�ksr�	� − jl�ksr�

�

�r
�rhl

+�kr�	�s



r=S

,

�2�

where S is the sphere radius, �s and �s are the dielectric
permittivity and magnetic permeability of the sphere, and
ks=��s�s� /c. The matrix elements Tl

H can be obtained from
Eq. �2� by means of the transformations �s↔�s and �↔�.

Once the T matrix of a single sphere has been obtained,
the multiple scattering between identical spheres arranged in
a given periodic lattice can be calculated by means of the
vector KKR method. In the layer version of this method,31

the 3D PC slab is first divided into layers parallel to a given
crystallographic plane and the multipole expansion in spheri-
cal waves is used to account for the multiple-scattering pro-
cess inside a layer. Next, a series expansion in a plane-wave
basis is used to calculate the electromagnetic interactions be-
tween layers and to compute the far-field power flux in both
sides of the crystal slab.

The scatterers composing a real colloidal PC are generally
not perfectly spherical, having size and shape distributions
over an ensemble of scatterers. Moreover, the scatterers are
not located at sites of a perfectly periodic lattice. All these
imperfections in the crystalline structure of a real PC pro-
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duce diffuse light scattering, which removes energy from the
coherently scattered waves. If there are N types of scatterers
with different T matrices Ti, i=1,2 , . . . ,N, each of these
scatterers is replaced in the ATA method with a single aver-
age scatterer described by an average T matrix given by

�T� = �
i=1

N

CiTi, �3�

where Ci is the concentration of the ith scatterer and
�i=1

N Ci=1. Since each lattice site is occupied by an average
scatterer, the application of the KKR method proceeds in the
same fashion as in the case of ordered PC slabs. The ATA
method can also be applied for the modeling of vacancies.38

For example, if C
1 denotes the fraction of lattice sites
occupied by identical scatterers described by a T matrix T
and the remaining 1−C sites are empty, then Eq. �3� reduces
to �T�=CT.

The ATA method can be extended for the case of a con-
tinuous distribution of scatterer types. As a first approxima-
tion, we could consider that the distributions of size, shape,
position, orientation, refractive index, etc., of the scatterers
are statistically independent from each other when their de-
viations from the mean values are small enough.28 Under this
condition, we will focus our interest on the effect of the size
distribution of spheres centered at lattice sites. Assuming that
the radii s are distributed according to a random process with
probability density function P�s�, the average T matrix in Eq.
�3� is given by

�T� =
 T�s�P�s�ds . �4�

Besides, if vacancies �concentration 1−C� are included, the
spheres of the statistical ensemble can only be centered at a
fraction C of the lattice sites. In this case, we see that Eq. �3�
becomes

�T� = C
 T�s�P�s�ds . �5�

Similar expressions can be obtained whenever disorder ef-
fects associated with vacancies and with a continuous size
distribution of scatterers are separated from other sources of
disorder. In this study we will assume a Gaussian distribution
P�s� of sphere radii with mean Sav �average radius� and stan-
dard deviation � since the theoretical results obtained
through this approach are compatible with measurements re-
ported in the literature. Also, in the limit of small degrees of
disorder, that is, when �
Sav, the results and conclusions
obtained from the Gaussian distribution are basically the
same as those obtained from other probability density func-
tions, e.g., logarithmic normal, gamma, and modified gamma
distributions.28

III. ATA RESULTS

The model structure we will employ for our analysis is a
close-packed face-centered-cubic �fcc� lattice of spheres of
dielectric constant �s=2.5 embedded in a medium of �=1,

which corresponds to latex spheres in air. This structure has
been repeatedly fabricated and measurements of its reflec-
tance and transmittance spectra are available in the
literature.5 The crystal growth direction is typically �111	,6 so
we will focus on the optical response when an incident light
beam impinges in that particular direction �normal inci-
dence�. The photon energy is expressed in reduced units a /�,
where a is the lattice constant of the classical cubic cell and
� is the wavelength of the incident light. In the case of a
Gaussian distribution, the integral in Eq. �4� extends over an
infinite interval and cannot be solved in closed form, so an
iterative Romberg’s quadrature41 routine has been used to
perform the integrations numerically. Also, a spherical wave
expansion cutoff LMAX=9 and 41 plane waves31,32 have
been used in the vector KKR method in order to obtain con-
verged results for the reflectance and transmittance coeffi-
cients, R00 and T00, in the range of energies we are interested
in.

The main multipole field scattered by the spheres in the
lattice is the dipole field �l=1�, then the T-matrix elements
corresponding to electric and magnetic dipoles are T1

E and
T1

H, respectively. In Fig. 1, the real and imaginary parts of
these dipolar elements are plotted as functions of the reduced
photon energy. Solid lines are the results obtained directly
from Eq. �2� for a single sphere with radius 0.5a, while
dashed lines correspond to the ATA matrix obtained for an
ensemble of spheres characterized by Sav=0.5a and � /Sav
=0.05, that is, a standard deviation of 5% from the mean
radius. Due to the low standard deviation introduced, the
single sphere and the average T matrices exhibit relatively
small differences. However, we will see below that even
smaller amounts of disorder have a tremendous effect on the
ATA predicted response, especially in the high-energy range
�a /�	1�.

In Fig. 2�a� we show the calculated reflectance spectrum
of a close-packed perfectly periodic crystal, that is, Sav
=0.5a and � /Sav=0. The spectrum exhibits a peak at a /�

FIG. 1. �Color online� Real and imaginary parts of the single-
sphere scattering coefficients corresponding to: �a� electric dipoles
�T1

E� and �b� magnetic dipoles �T1
H� for a sphere dielectric constant

�s=2.5. Solid lines correspond to a sphere radius S=0.5a and
dashed lines correspond to ATA with an average radius Sav=0.5a
and standard deviation �=0.05Sav.
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=0.61 due to the existence of a pseudo-band-gap in the pho-
tonic band structure and the usual Fabry-Pérot oscillations
related to the finite thickness of the slab. In the high-energy
range, an abruptly fluctuating behavior of the reflectance can
be seen with several high peaks of unitary amplitude. As in
the case of sphere monolayers,42,43 these peaks arise from
internal resonances of the PC that can be classified according
to the main multipole interactions involved in the response of
the system.23 In Fig. 2�b�, the reflectance spectrum has been
recalculated for � /Sav=0.025 and two different concentra-
tions of vacancies. In the case of zero vacancies �C=1,
dashed line� and within the low-energy range, the reflectance
is basically the same as that shown in Fig. 2�a�, which means
that a small degree of disorder has little effect on the optical
response for these low energies. However, the spectrum
changes dramatically in the high-energy range, where the
reflectance values have decreased significantly and several
peaks have practically disappeared. By adding 5% of vacan-
cies �C=0.95, solid line�, the reflectance decreases even
more and several peaks are smoothed out. In this case, only
three peaks around a /�=1.2 and two peaks above a /�=1.6
can be observed. The transmittance spectrum plotted in Fig.
2�c� shows the same trend.

Although very fine-featured reflection spectra as that
shown in Fig. 2�a� have not been experimentally reported yet
to the authors’ knowledge, the optical spectra in Figs. 2�b�
and 2�c� are quite similar to measurements published in the
literature. In Fig. 3 we compare the ATA results with spectra
reported by two independent research groups: Figs. 3�a� and
3�b� correspond to Ref. 9, whereas Figs. 3�c� and 3�d� cor-
respond to Ref. 21. Figures 3�a� and 3�b� show the compari-
son between the measured reflectance and transmittance
spectra9 �solid lines� and the spectra we calculated �dashed
lines� for a PC 18 layers wide. The ATA parameters are C
=0.97, Sav=0.5a, and �=0.025Sav whereas the best fitting
value for the sphere dielectric constant is �s=2.6. Analo-
gously, Figs. 3�c� and 3�d� show the comparison between
measured spectra21 �solid lines� and our calculations �dashed

lines� for a PC 21 layers wide, �s=2.5, and ATA parameters
C=0.96, Sav=0.5a, and �=0.025Sav. A very good agreement
between theory and experiment is observed in all cases. It is
worth mentioning that this kind of agreement in the high-
energy range had not been previously obtained by any other
method except by adding extinction to the dielectric constant
of the spheres.

From the results presented in Figs. 2 and 3 we realize that
the inclusion of vacancies seems to be essential to reproduce
experimental curves in the high-energy range. While the in-
clusion of dispersion in sphere radii attenuates several sharp
resonances of the perfect lattice, the inclusion of empty sites
in the lattice seems to produce a smoothing effect on the
optical spectra. In Fig. 4 we show the optical spectra ob-
tained with the ATA for C=0.95 and various values of � /Sav.
We can observe that reflectance peaks are attenuated as
� /Sav increases, while transmittance dips become more pro-
nounced.

IV. EXTINCTION APPROACHES

In the inner extinction approximation �IEA� method a
great variety of imperfections is represented by a single pa-
rameter via the imaginary part of the dielectric constant of
the latex spheres. Analogously to the IEA, another single-
parameter extinction approach to account for the diffusely
scattered light that is removed from coherent beams could be
envisaged. In this rather complementary approach, which
will be referred to as the outer extinction approximation
�OEA� method, the energy-loss mechanism is provided by a
nonzero imaginary part of the dielectric constant � of the
medium surrounding the spheres, instead of being provided
by a nonzero imaginary part of the dielectric constant �s of
the latex spheres. Although for the case of latex spheres in air

FIG. 2. �Color online� �a� Reflectance spectrum for a perfect
crystal 18 layers wide with spheres of dielectric constant �s=2.5 in
air. �b� Reflectance and �c� transmittance spectra with ATA param-
eters: Sav=0.5a, �=0.05Sav, C=0.95 �solid lines�, and C=1 �dashed
lines�.

FIG. 3. �Color online� ��a� and �b�	 Measured reflectance and
transmittance spectra �solid lines� extracted from Ref. 9 for a crystal
18 layers wide and the calculated spectra �dashed lines� for spheres
of dielectric constant �s=2.6 in air and ATA parameters: Sav=0.5a,
�=0.025Sav, and C=0.97. ��c� and �d�	 Measured reflectance and
transmittance spectra �solid lines� extracted from Ref. 21 for a crys-
tal 21 layers wide and the calculated spectra �dashed lines� for
spheres of dielectric constant �s=2.5 in air and ATA parameters
Sav=0.5a, �=0.025Sav, and C=0.96.
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the reader could feel more comfortable when latex and not
air is to be considered the lossy medium, both extinction
approximations are equivalent from a modeling point of
view, and we have checked that both the IEA and OEA meth-
ods provide similar fittings of experimental curves. On the
other hand, and in contrast with these single-parameter ap-
proaches, we have seen that the use of the ATA method al-
lowed us to include different sources of deviation from per-
fect periodicity, represented in our previous examples by
different parameters such as �, Sav, or C. Taking into account
that �i� both the IEA and OEA are computationally less de-
manding than the ATA and �ii� vacancies seem to play an
important role in the optical response of self-assembling opal
samples that are being produced nowadays, we have sought
an improved method which, as in the ATA approach, incor-
porates the parameter 1−C representing the concentration of
vacancies while avoiding, as in the extinction approaches,
direct computation of the average T matrix demanded by the
ATA method. The improvement can be achieved by noting
that when vacancies are considered to be the only source of
disorder, that is, when we assume that only a fraction C�1
of lattice sites is occupied by identical scatterers described
by the same T matrix T, then the average T matrix adopts the
very simple form,

�T� = CT . �6�

If we are using the ATA method to obtain the optical re-
sponse of a PC affected by vacancies as the only source of
disorder, the calculation of the average T matrix �T� does not
require further explicit statistical calculations. Unfortunately,
the convenient form of Eq. �6� must be abandoned and ex-
plicit statistical calculations—as those performed to obtain
the results presented in Sec. III—are required for real
samples affected not only by vacancies but also by other
deviations from perfect periodicity. It is clear that for a PC
constructed from lossless building blocks, real dielectric con-
stants are to be used for the calculation of the scattering
matrix T in Eq. �5� or �6�. However, we could keep the

convenient form of Eq. �6� for a PC affected only by vacan-
cies if all the remaining deviations from perfect periodicity
are assigned to extinction through the introduction, as in the
IEA or OEA methods, of nonzero imaginary parts for the
dielectric constants of the PC building blocks. By doing so,
we can obtain more flexible versions of the simple extinction
approach where the effect of imperfections is managed
through the use of two, instead of one, parameters. Although
it is not our purpose to investigate here how each parameter
affects the reflectance and transmittance spectra, some hints
can be obtained by the ATA results presented in Figs. 2 and
3, where the inclusion of dispersion in sphere radii seemed to
attenuate several sharp resonances of the perfect lattice,
while the inclusion of vacancies seemed to produce a
smoothing effect on the optical spectra, but the question re-
mains whether the effect of vacancies can be distinguished
from the effect of other kind of imperfections by only mea-
suring reflectance and transmittance spectra.

IEA, OEA, and ATA approaches are useful theoretical
tools for reproducing the optical response of weakly disor-
dered PCs. They all provide very good fittings of experimen-
tal data and essentially the same results when the disorder
parameters are properly chosen. This can be observed in Fig.
5 where we have compared IEA, OEA, and ATA methods for
the close-packed fcc lattice of spheres of dielectric constant
�s=2.5 embedded in a medium of �=1. To simulate disorder
effects with the IEA method we have added an imaginary
part to the dielectric constant of the spheres ��s=2.5
+0.04i�, and no vacancies �C=1� have been introduced,
while in the OEA method the same value of the imaginary
part has been added to the outer dielectric constant ��=1
+0.04i� but 3% of vacancies have been included �C=0.97�.
For the ATA method we have used Sav=0.5a, �=0.025Sav,
and C=0.95.

The close agreement between experiment, the ATA
method, and the extinction approaches indicates that the re-
flectance and transmittance spectra of a 3D colloidal PC in
the high-energy range are almost determined by the optical

FIG. 4. �Color online� �a� Reflectance and �b� transmittance
spectra for a crystal 18 layers wide with spheres of dielectric con-
stant �s=2.5 in air. The ATA parameters are: Sav=0.5a, C=0.95, and
the spectra are shown for different values of � /Sav.

FIG. 5. �Color online� Comparison among the ATA, IEA, and
OEA �a� reflectance and �b� transmittance spectra for a crystal 18
layers wide. ATA parameters: �s=2.5, �=1, Sav=0.5a, �=0.025Sav,
and C=0.95. IEA parameters: �s=2.5+ i0.04, �=1, and C=1. OEA
parameters: �s=2.5, �=1+ i0.04, and C=0.97.
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extinction due to imperfections and defects in the crystalline
structure of the slab.20 These results would also indicate that
a perfect PC with material absorption generates almost the
same reflectance and transmittance as a disordered PC with-
out material loss, however more experimental work is
needed since we have made only a theoretical prediction in
this case. Besides, we must point out that these results are
valid when no diffracted beams emerge from the PC slab,44

which would provide a mean to distinguish between different
sources of disorder and losses in higher-energy ranges.

V. CONCLUSION

In summary, we have used the average T-matrix approxi-
mation to evaluate disorder effects in the optical response of
photonic crystals. The ATA method has been applied to col-
loidal crystals and validated with experimental data available
in the literature. Our numerical results show that disorder has
little effect on the optical spectra in the low-energy range but
affects dramatically the response of the system in the high-
energy range. A very good agreement, in the high-energy

range previously obtained only with the IEA method, is ob-
served between theory and experiment. Using some ideas of
the ATA method, we have shown how to obtain more flexible
extinction approaches in which the effect of imperfections is
managed through the use of two, instead of one, parameters.
We have obtained a close agreement between experimental
data and the results of the ATA method in the case of disor-
dered photonic crystals with negligible material loss. Al-
though this is also true for extinction methods, more experi-
mental work on weakly disordered crystals with a certain
amount of material loss is needed in order to demonstrate the
usefulness of the ATA and extinction methods in these cases.
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